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The conditions of the stress function being real, applicable to the solu- 

tion of inverse problems, are derived. A few such solutions are given as 
illustrative examples. The conditions of the stress function being bi- 
harmonic in the plastic range are also determined. 

1. Consider a homogeneous isotropic material in the plastic state. The 
stress components satisfy the equilibrium conditions 

and the Huber-Von Mises (or St. Venant-Tresca) Plasticity conditions 

(1.2) 

where k is the yield limit in shear Ill. We introduce the stress func- 
tion F: 

k a2F k a2F 
ar= 2ay2’ Gy = y- ax2 9 

k a2F 
z ry = - 

-- 
2 axay (1.3) 

Equation (1.1) is satisfied identically, and (1.2) is left for the de- 
termination of function F. This equation can be represented in the com- 
plex variable I = x + iy as 

a2F asp 
pr=i (1.4) 

From physical considerations F has clearly to be real, i.e. 

F (1, i) = F (2, i) 

Now (1.4) can be written as 

SF 
T = exp [ if31 

(1.5) 

(1.6) 
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where @ = @(r, t) is a real function. Integration of (1.6) results in 

* rl s 
F (z, Z) == 

s i 

-- 
dr) L exp ti@ (b ;)I dE + ZTJ (z) + x (4 (1.7) 

La no 

Theorem 1. The necessary and sufficient condition for the function 

F(z, t) defined by (1.7) to be real is 

azei@ aze-iQ 
- _ - 
a22 a22 (1.8) 

Proof. Applying the operator 

a4 
az2ai2 (1.9) 

to the functions F(z, T) and F(EI- I) and taking into account (1.5) we 
obtain the proof of the necessity of the condition (1.8). To prove that 
this condition is also sufficient we write (1.8) as 

aw a43 -=- 
a22aiz a22a22 

The operator (1.9) is biharmonic, and consequently 
F by a biharmonic additive term which can be selected 
the theorem is proved. 

F can differ from - 
so that F = F. Thus 

The condition (1.8). for practical purposes, may be conveniently re- 
presented in the Cartesian coordinates 

cos@ ( g-g -zEE 1 ax ay, $sin@ ( __2 +$-(+$T+($+) (1.10) 

or in the polar coordinates (r, $1 

+sinCO+2~)(%~+~i~)z-_~-(~)2)=0 (1.11) 

Introducing the notation exp [ i@ 1 = u + iv. (1.8) can be represented 
as 

(1.12) 

- 
Theorem 2. A particular solution @ = @(z, z) of (1.8), which does not 

contain arbitrary parameters. determines the stress components within a 
constant hydrostatic pressure. 
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Proof. Theorem 1 and Expression (1.7) show that the solution 
0 = 8(x, y) determines a real stress function F(z, I) within an additive 

term pzi (p = const) which represents constant hydrostatic pressure. 

Special interest attaches to stress functions which satisfy the bi- 
harmonic equation in the plastic range. 

Theorea 3. The necessary and sufficient condition for the stress func- 
tion F to be a biharmonic function is that the function @ = @(z, I) 
satisfies the following system of equations: 

f320 -_a2(3_2ao -!z!%=(), 
8x2 By* ax ay 

(ig-(g,"-2$&0 (1.13) 

Proof. If F, represented by (1.7). is a biharmonic function, then in 
conjunction with (1.6) the following holds: 

SF 
0, or 

a2ei@ 

az2&2 = 
--0 

azz 
(1.14) 

Representation of this relationship in Cartesian coordinates leads to 
(1.13). and thus to the proof of the necessity condition. 

Inverse arguments lead from (1.13) to (1.14) and to the proof of the 
sufficiency condition. 

It is obvious that the solutions 
or (1.10). 

The class of solutions of (1.13) 
not empty. As an example we propose 

1. @ = const. corresponding to a 

of (1.13) are also solutions of (1.8) 

is apparently very small, but it is 
the following solutions: 

uniform stress field; 

2. 0 = -2 tan-‘(y/r) + const. This case was utilized by Galin [ 2 I . 

Note 2. Equations (1.10) and (1.12) possess the following features. 
If 8 = 0(x, y) is a solution of (1. lo), then v, = - @( - x, y) and 
Yz = - 0(x, -y), and consequently ys = 0(-x, -y) are also solutions. If 
w = u + iv is a solution of (1.12), then w1 = u1 + iv1 is also a solution 
of the same equation. 

Note 2. If some solution of (1.8) is known. then it is not necessary 
to find the stress function from (1.7) and to calculate the stresses 
from this function. It is easier to utilize the equilibrium equation 
(1.1) and the fact that @ determines uniquely the difference between the 
normal and shear stresses. 

Z. We shall now determine a few particular solutions of the equilibrium 
equations in the plastic range by solving (1.10) and (1.11). 
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1. We seek a solution in the form @ = a(y). Equation (1.10) can thus 

be written 

d’Q dQ 2 
-_ 
dy” 

tall8 - ( j-0 dy 

Solving this equation we find % = sin-‘(Ay + B). This corresponds to 

a case of a strip compressed by two rough plates [ 1,3 1 

5, = p - r1.c - 2 1/i - (Z4y + B)“, Qv = p - AZ, ZXU = ny+ B (2.1) 

where the stresses are represented relative to the magnitude k. A solu- 

tion in the form 8 = 8(a x + p y ) reduces to the previous one by rotat- 

ing the coordinate axes. 

2. Seeking a solution in the form 0 = - 24 + R(r) reduces Equation 

(1.12) to 

Solving this equation we find 

R=arcsin(a-$), or @=-2rp+sin-1(~-~,) (2.2) 

and the corresponding stress components are 

6, 
=-2a(p+d1- 

-- 
a2 In [l/l - a2 1/(1 - a2) r4 + 2abr2- b2 $. 

% 

+ (1 - a2) r2 + ab] + a sin-’ F +s jf( 1 - ~2) r4 + 2abr2 - b2 + p (2.3) 

b 
T Pm =P--_r2 

The displacement components found from a simplified Hencky-Von Mises 

theory [l 1 and independent of the angle 4 are 

C 
a?=79 U = v dr - & 1/(1 - az) r* + 2abr” - b” (2.4) 

Here b f 0. If b = 0 then 

C 
Ur = 7, % =dv$& (2.5) 

The solution represented by (2.3) and (2.4) is the most general solu- 

tion among all known closed-form solutions. By specializing the values 

of the parameters entering into this solution, we obtain a series of 

particular solutions. 
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a) For a = 0, b = 0, we obtain 

Inr2T1 fp, T 9J =O (2.s) 

which represents an axisymmetrical 

b) For a = 1, b = 0, we obtain 

-2n,+ 

stress field [ 1 ] . 

P* z,, = 1 (2.7) 

which is a solution for a plastic wedge with uniformly loaded faces. 

c) For b = 0 the superposition of the two previous cases results in 

(cf. c 11) 
6, 

% 1 = - 2arp + VI - a2 (In r2 T 1) + p, TrQ = a 

d) For a = 0, b = - E there results a most general case of axisym- 

metric loading [ 1 1 : 

e) Letting o = 1. b = c we obtain a new solution of a problem pre- 
sented in [ 3 ] : 

with the corresponding displacements 

Cl 
I$ = F r y$,==-dr - ~1/2Cr2J 

Along the contours r = r0 the stresses and displacements 

3=Pr2*Tm z rrp ==i--$ (PI, p3 = const) 

ur = Sz t 
~_ 

r0 
UT = dr, - ;; T/2CQ - C2 

0 

Letting d = 0 and r -+ by we obtain 

(2.11) 

are 

=r 
% 1 

-T-- 

=--2g,+n+p, ‘d,, =I, up = 0, up = --Cl ‘5 J 2 _ (2.12) 
c 
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